Preconditioning the Matrix Exponential Operator with Applications
نویسندگان
چکیده
The idea of preconditioning is usually associated with solution techniques for solving linear systems or eigenvalue problems. It refers to a general method by which the original system is transformed into one which admits the same solution but which is easier to solve. Following this principle we consider in this paper techniques for preconditioning the matrix exponential operator, e A y 0 , using diierent approximations of the matrix A. These techniques are based on using generalized Runge Kutta type methods. Preconditioners based on the sparsity structure of the matrix, such as diagonal, block diagonal, and least-squares tensor sum approximations are presented. Numerical experiments are reported to compare the quality of the schemes introduced.
منابع مشابه
The exponential functions of central-symmetric $X$-form matrices
It is well known that the matrix exponential function has practical applications in engineering and applied sciences. In this paper, we present some new explicit identities to the exponential functions of a special class of matrices that are known as central-symmetric $X$-form. For instance, $e^{mathbf{A}t}$, $t^{mathbf{A}}$ and $a^{mathbf{A}t}$ will be evaluated by the new formulas in this par...
متن کاملPreconditioning Lanczos Approximations to the Matrix Exponential
The Lanczos method is an iterative procedure to compute an orthogonal basis for the Krylov subspace generated by a symmetric matrix A and a starting vector v. An interesting application of this method is the computation of the matrix exponential exp(−τA)v. This vector plays an important role in the solution of parabolic equations where A results from some form of discretization of an elliptic o...
متن کاملOn the fine spectra of the Zweier matrix as an operator over the weighted sequence space $l_{p}(w)$
In the present paper, the ne spectrum of the Zweier matrix as anoperator over the weighted sequence space `p(w); have been examined.
متن کاملAcceleration Techniques for Approximating the Matrix Exponential Operator
In this paper we investigate some well established and more recent methods that aim at approximating the vector exp(A)v when A is a large symmetric negative semidefinite matrix, by efficiently combining subspace projections and spectral transformations. We show that some recently developed acceleration procedures may be restated as preconditioning techniques for the partial fraction expansion f...
متن کاملNumerical Solution of Multidimensional Exponential Levy Equation by Block Pulse Function
The multidimensional exponential Levy equations are used to describe many stochastic phenomena such as market fluctuations. Unfortunately in practice an exact solution does not exist for these equations. This motivates us to propose a numerical solution for n-dimensional exponential Levy equations by block pulse functions. We compute the jump integral of each block pulse function and present a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Sci. Comput.
دوره 13 شماره
صفحات -
تاریخ انتشار 1998